Vector-valued Hausdorff–Young inequality on compact groups
نویسندگان
چکیده
منابع مشابه
On Vector-valued Hardy Martingales and a Generalized Jensen’s Inequality
We establish a generalized Jensen’s inequality for analytic vector-valued functions on TN using a monotonicity property of vector-valued Hardy martingales. We then discuss how this result extends to functions on a compact abelian group G, which are analytic with respect to an order on the dual group. We also give a generalization of Helson and Lowdenslager’s version of Jensen’s inequality to ce...
متن کاملChevalley Restriction Theorem for Vector-valued Functions on Quantum Groups
We generalize Chevalley’s theorem about restriction Res : C[g]g → C[h]W to the case when a semisimple Lie algebra g is replaced by a quantum group and the target space C of the polynomial maps is replaced by a finite dimensional representation V of this quantum group. We prove that the restriction map Res : (Oq(G) ⊗ V )Uq(g) → O(H) ⊗ V is injective and describe the image.
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملA large-deviation inequality for vector-valued martingales
Let X = (X0, . . . , Xn) be a discrete-time martingale taking values in any real Euclidean space such that X0 = 0 and for all n, ‖Xn − Xn−1‖ ≤ 1. We prove the large deviation bound Pr [‖Xn‖ ≥ a] < 2e1−(a−1) 2/2n. This upper bound is within a constant factor, e2, of the AzumaHoeffding Inequality for real-valued martingales. This improves an earlier result of O. Kallenberg and R. Sztencel (1992)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 2004
ISSN: 0024-6115,1460-244X
DOI: 10.1112/s0024611503014527